
Least-squares Meshes

Olga Sorkine
Tel Aviv University
sorkine@tau.ac.il

Daniel Cohen-Or
Tel Aviv University

dcor@tau.ac.il

Abstract

In this paper we introduce Least-squares Meshes:
meshes with a prescribed connectivity that approximate a
set of control points in a least-squares sense. The given
mesh consists of a planar graph with arbitrary connectiv-
ity and a sparse set of control points with geometry. The
geometry of the mesh is reconstructed by solving a sparse
linear system. The linear system not only defines a surface
that approximates the given control points, but it also dis-
tributes the vertices over the surface in a fair way. That is,
each vertex lies as close as possible to the center of grav-
ity of its immediate neighbors. The Least-squares Meshes
(LS-meshes) are a visually smooth and fair approximation
of the given control points. We show that the connectivity
of the mesh contains geometric information that affects the
shape of the reconstructed surface. Finally, we discuss the
applicability of LS-meshes to approximation of given sur-
faces, smooth completion and mesh editing.

1 Introduction

This paper introduces Least-squares Meshes: meshes
that are constructed from a given connectivity and approxi-
mate a set of control points in a least-squares sense. Given a
planar graph with arbitrary connectivity and a sparse set of
control points with geometry, we reconstruct the geometry
of the rest of the mesh vertices by solving a sparse linear
system. The linear system not only defines a surface that
approximates the given control points, but it also distributes
the vertices over the surface in a fair way. That is, each
vertex lies as close as possible to the center of gravity of its
immediate neighbors. The LS-meshes are a visually smooth
and fair approximation of the given control points.

This paper also shows that by carefully selecting the con-
trol points, an LS-mesh can effectively approximate a given
mesh. Figure 1 displays LS-meshes with the connectivity
and control points of the camel model. Figure 2(a) shows a
horse model consisting of 20K vertices. In 2(b), the same
connectivity is used to approximate a subset of 1000 ver-

tices of the model in 2(a). A close-up view of the LS-mesh
is shown in 2(d) to demonstrate the fairing effect of the LS-
approximation.

Common scattered data approximation techniques [7] re-
ceive an unstructured data set of points as input and fit a
continuous surface that approximates (or interpolates) the
points, while satisfying some desired conditions, such as
smoothness properties. For visualization and further pro-
cessing purposes, the continuous surface is then often sam-
pled and triangulated. When implicit functions are fitted to
approximate a set of points [3, 15, 17], they define a level set
of a trivariate function from which the surface needs to be
extracted. In contrast, an LS-mesh directly fits a prescribed
mesh over a surface that approximates the points.

Our work is close to the convex interpolation method of
Floater [6], where a given mesh is laid over a plane. As
we shall describe in the following section, our method and
Floater’s method both distribute the mesh vertices fairly,
while satisfying constraints given as control points. How-
ever, Floater’s control points are hard constraints, while
our control points are soft and satisfied in the least-squares
sense. Floater’s method reconstructs the geometry of the
mesh in the plane, while our method reconstructs an arbi-
trary surface is 3D. In particular, LS-meshes can be con-
structed from arbitrary connectivity graphs, and generate
shapes with genus higher than zero and surfaces which con-
tain boundaries.

Another related area of work is the variational subdi-
vision schemes [11, 12], which can be used to solve the
scattered data interpolation problem. Kobbelt [12] applies
Gauss-Seidel iterations to minimize the thin plate energy of
the surface [14]. These iterations act as a smoothing filter on
the mesh. Interleaving the Gauss-Seidel iteration steps with
mesh subdivision steps generates a smooth surface from an
initial sparse mesh.

The rest of the paper is organized as follows. The next
section reviews the mathematical background needed to
construct an LS-mesh. In Section 3 we discuss the proper-
ties of LS-meshes. Different strategies to obtain LS-meshes
that approximate a given shape are shown in Section 4. Sec-
tion 5 addresses the algorithmic issues of solving the linear

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

(a) (b) (c) (d)

Figure 1. LS-mesh: a mesh constructed from a given connectivity graph and a sparse set of control points with
geometry. In this example the connectivity is taken from the camel mesh. In (a) the LS-mesh is constructed with
100 control points and in (c) with 2000. The connectivity graph contains 39074 vertices (without any geometric
information). (b) and (d) show close-ups on the head; the control points are marked by small dots.

(a) (b) (c) (d)

Figure 2. (a) The original horse model, 19851 vertices; (b) close-up on the original connectivity; (c) LS-mesh of
the horse model with 1K control vertices; (d) close-up on the LS-mesh connectivity.

least-squares system. We discuss the results and applica-
tions in Section 6 and conclude in Section 7.

2 Overview

Let G = (V,E) be the given mesh graph, where V =
{1, 2, ..., n} is the set of vertex indices and E is the set of
edges. We denote by vi the (unknown) location of vertex
i in space. The following equation defines a fairness and
smoothness condition for vertex vi (similar to [6]):

vi − 1
di

∑
j:(i,j)∈E

vj = 0, (1)

where di is the valence of vertex i. If the above equation
is satisfied, the vertex i lies in the center of gravity of its
immediate neighbors.

Tutte [18] has shown that if we assume the points vi to
reside in the 2D plane, the above system defines a valid em-
bedding of a planar graph onto a plane, provided that the

boundary vertices of the graph are set to lie on the bound-
ary of a convex polygon (and thus the boundary vertices
and their corresponding equations are eliminated from the
system). Floater [6] extended this result for systems that re-
quire the vertices to lie in any convex combination of their
neighbors. Here, we would like to solve this system for 3D
meshes, thus vi’s are assumed to be in R

3. The linear sys-
tem can be written in matrix form:

Lx = 0, Ly = 0, Lz = 0,

where x, y and z are the n×1 vectors containing the x, y
and z coordinates of the n vertices and L is the following
n×n matrix:

Lij =

1 i = j
− 1

di
(i, j) ∈ E

0 otherwise.

The matrix L is known as the Laplacian of the
mesh [5, 10, 16]. The rank of L is n − k where k is the

2

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

��
��

��

�� ��

��

�
�

�
�

�
��

�

� �

�
� � �

�
�
�

�
�

� �
�

�
�� � �

�
�

�
�

�
�

�
��

�

�

�

�� � � � �

� � � ��

�

�
�

�
�

�
�� �

�
�

�
�

�
�

�
��

Figure 3. A small example of a graph and its cor-
responding matrix. The dark vertices are set as
control points.

number of connected components in the graph G. There-
fore, assuming that our mesh graph is connected, the rank
of L is n − 1, and there is a one-dimensional subspace of
solutions for the system spanned by the vector (1, 1, ..., 1)T .

Without any geometric information given, the solution
of the system is not interesting. Providing the 3D location
for some m control vertices allows to get a non-trivial and
unique solution. We add the equations of the control ver-
tices:

vs = (xs, ys, zs), s ∈ C, (2)

where C = {s1, s2, ..., sm} is the set of indices of the
control vertices. Our system then becomes rectangular
((n+m)×n):

Ax = b,

where

A =
(

L
F

)
, Fij =

{
1 j = si ∈ C
0 otherwise

bk =
{

0 k ≤ n
xsk−n

n < k ≤ n + m

See Figure 3 for an example of a mesh with control ver-
tices and the corresponding matrix. Adding at least one row
for a control vertex to our system makes the A matrix full-
rank. The system is solved in least-squares sense, i.e. we
find x that minimizes

‖Ax − b‖2 = ‖Lx‖2 +
∑
s∈C

|xs − v(x)
s |2. (3)

The unique analytical solution is x =
(
AT A

)−1
AT b

since A has full rank. Note that element (i, j) of the matrix
AT A does not vanish only if the graph distance between
i and j is at most two. This implies that AT A is sparse
(although not as sparse as A that only accounts for first-
order neighborhoods).

Note that the control vertices play a conceptually sim-
ilar role to the boundary vertices in Tutte’s graph embed-
ding solution. They constrain the system by augmenting

the connectivity with some geometric information and al-
low to obtain an interesting solution. However, the major
difference between Tutte’s and Floater’s boundary condi-
tions and our control vertices is the approach to solving the
system: while they force the constrained vertices to lie in
the exact prescribed location, thus eliminating them from
the system, we solve the system in least-squares sense, and
the constraints are thus approximated, rather than interpo-
lated. We keep the smoothness and fairness equations for
the control vertices, and the resulting solution tends to re-
spect these conditions at the constrained vertices, as well as
at the free ones.

To obtain a better understanding and intuition for the
claims above, take a look at Figure 4, which shows a sim-
ple 2D example. A 5×5 triangulated grid is shown in (a),
where three of its vertices are used as control points. The
geometric position of the rest of the grid points is meaning-
less and is only used to illustrate the given connectivity. An
LS-mesh constructed from this connectivity with the three
control points is shown in the second column. Note that the
LS-mesh does not interpolate the three control points, and
the vertices are not placed exactly at the average position
of their neighbors. The error comes from the fact that there
is no solution that can fully satisfy all the 25+3 constraints.
When there are more elements in the mesh (see the 20×20
triangulated grid in (b)) the mesh is more flexible and the er-
ror is better distributed among the constraints. In particular,
the control points are better satisfied.

3 Connectivity Meshes

A 3D mesh consists of its connectivity information and
the geometry, i.e., the 3D coordinates of the mesh vertices.
We will refer to a mesh that has no geometry information as
a connectivity mesh. A connectivity mesh has no shape. It
can be generated from an arbitrary mesh by removing its ge-
ometry information. In our work we deal with what we can
call an augmented connectivity mesh, where only a subset
of the mesh vertices contains geometric information. Our
linear least-squares system reconstructs the geometry of the
mesh vertices while approximating the known geometry of
the subset, and positions each vertex in the mean geometry
of its immediate neighbors. Since the reconstruction sys-
tem also accounts for the given connectivity of the mesh,
it yields a shape which is close to the notion of connectiv-
ity shapes [9]. In their work, Isenburg et al. showed that a
pure connectivity mesh has some natural shape, assuming
that all the edges of the mesh are of equal length. They em-
ploy an iterative optimization process which minimizes an
energy functional that inflates the mesh towards a smooth
shape where the edges are close to uniform length. The op-
timization process is non-linear and requires to interleave
some regularization steps so that the reconstructed shape

3

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

(a) 5×5 grid (b) 20×20 grid

Figure 4. LS-meshes of triangulated grids. The first and third columns visualize the connectivity of the given
graphs; the geometric position of the grid vertices is meaningless. Three control points at the corners of
the grid are used to generate the LS-meshes, their positions are marked by small dots. Note that since the
LS-mesh satisfies the constraints in least-squares sense, some error is present: neither the control points are
interpolated nor the fairness condition is precisely satisfied.

(a) (b) (c)

Figure 5. Reconstructing the geometry of the camel’s head using the original connectivity. We removed the
geometry from the head (marked in (a)). (b) The control points around the “hole” are marked by small spheres.
(c) Close-up on the reconstructed geometry. Note that the connectivity of the head contains some information
that induces non-trivial shape, without using a single control point.

bears some resemblance to the original mesh. However, the
key contribution of their work is that it shows that a pure
connectivity mesh contains some non-trivial geometric in-
formation.

In light of the above, an LS-mesh can be regarded as a
non-pure connectivity mesh, where only some of its ver-
tices contain geometric information. If the given connectiv-
ity mesh is meant to reconstruct a given shape, these geom-
etry vertices act as control points assisting the reconstruc-
tion process to yield a better approximated shape. While
the connectivity shapes strive to satisfy the uniform edge-
length condition, in an LS-mesh the vertices satisfy flatness
and fairness conditions in a least-squares sense. It is inter-
esting to note that the smoothness term used as regulariza-
tion in the optimization process of connectivity shapes [9]
is in fact the Laplacian of the mesh.

When a small set of control points is used, the LS-mesh
is reminiscent of the connectivity shapes in the sense that
LS-mesh as well draws some non-trivial geometric infor-
mation from the connectivity alone. This is demonstrated in
Figure 7, where the legs on the left are reconstructed from a
very sparse set of control points, and and in Figure 5, where
the head of the camel model is reconstructed from the con-
nectivity graph, using only the ring of vertices around the
neck as control points.

4 Selecting the control points

LS-meshes can approximate a given mesh. A set of con-
trol points needs to be chosen in order to bring the surface
of the LS-mesh close to the original mesh and minimize
the geometric error. Intuitively, the control points should be

4

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

Figure 6. Different approaches to selecting the control points, applied to the screwdriver mesh (27152 vertices,
1000 control points). The bottom row shows the locations of the control points by small dots. In the left column,
random selection was used. The middle column displays the greedy approach, which places one control point at
a time in the vertex that attained the maximal error. In the right column the combined approach was used, where
in each of 31 steps we found 31 local error maxima and placed the control points there, and then recomputed
the LS-mesh to obtain the error estimation for the next selection step. One can see that random selection is
inefficient since it does not “predict” places which will have large reconstruction error. On the other hand, both
greedy selection and the combined approach work quite well and concentrate the control points in strategic
regions, such as the edges of the screwdriver, where the reconstruction error is likely to be larger otherwise.

places in “strategic” locations on the surface, such as fea-
ture points, the tips of extruding parts and places where ge-
ometric detail is present. We have tested several strategies
to select the control points:

• Random selection. This is a fast method, however
if the original mesh is highly irregular and high-
frequency details are present, random sampling might
miss them out, which results in an inefficient approxi-
mation (see Figure 6(a)).

• One-by-one greedy selection. This method chooses
one control point in each step by computing the LS-
mesh induced by the current set of control points and
placing the new control point at the vertex whose lo-
cation in the LS-mesh has maximal error compared
to its location in the original mesh. This method is
slower since it requires solving the least-squares sys-
tem in each step, but it is successful at identifying the
“important” control points (such as points on features
and details) and decreasing the approximation error.

• Combined local maxima method. With this strategy,
we compute the LS-mesh every K steps and mark the
vertex with maximal error as a control point, like in the
greedy method. In the K − 1 steps in between, we se-
lect control points by computing local maxima of the
error. That is, we traverse the mesh in breadth-first or-
der, starting from the last selected control point (that
attains the global maximum of the error) and mark the
vertices around it as “forbidden”, as long as the error

Figure 7. Close-up on the legs of the camel LS-
mesh computed using 100 control points (left) and
2000 control points (right).

decreases. Then, we find the vertex with the maxi-
mal error among the vertices that were not marked.
The process repeats K − 1 times, and then we com-
pute the new LS-mesh. This approach is faster than
the greedy method since less solves are required, and
it imitates the greedy method by fairly distributing the
control points.

An example comparing the three approaches in shown in
Figure 6. While the greedy approach seems to achieve the
best distribution of the control points and hence the smallest
geometric error, the combined approach is more practical in
making the tradeoff between the approximation error and
computation time.

5

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

(a) (b) (c)

Figure 8. Reconstructing the geometry of a hole using LS-meshes. (a) shows the original camel model, and the
region of the hole is marked. We “removed” the geometry from the vertices of the hump and reconstructed it
using the control points (marked by small spheres in (b)) and the connectivity of the hump. The reconstructed
model is shown in (c).

Model # vertices Factor Solve Total

Eight 2,718 0.085 0.004 0.097
Horse 19,851 0.900 0.032 0.996
Screwdriver 27,152 1.646 0.068 1.850
Camel 39,074 2.096 0.073 2.315

Table 1. Running times (sec.) of solving the lin-
ear least-squares systems for the different models.
Factor denotes the time spent on the factorization
of the normal equations. Solve is the time to solve
for one mesh function (x, y or z). The last column
shows the total time to compute the LS-mesh.

5 Solving the system

LS-meshes require to solve a sparse linear least-squares
system to reconstruct the geometry, i.e. to minimize
‖Ax − b‖. We use a direct method for solving the normal
equations AT Ax = AT b. A factorization of the coefficient
matrix AT A = RT R is found, where R is an upper trian-
gular matrix. Then x (and y, z) is found by solving two tri-
angular linear systems RT Rx = AT b, that is RT x̃ = AT b
and Rx = x̃.

Table 1 records the solution times for the models used
in our experiments on a 2.4 GHz Pentium 4 computer. The
table shows the time to decompose the coefficient matrix of
the normal equations into its triangular factors, the solution
time for one mesh function (x, y or z vectors) and the total
solution time. The direct method is quite fast for moderately
large meshes. Most of the time is spent on computing the
factorization, while the time of the solving is negligible.

6 Discussion

As discussed above, LS-meshes can approximate shapes.
As the number of control points gets smaller, the LS-mesh
gets closer and closer to being a pure connectivity shape.
Figure 11 shows a series of LS-meshes approximating dif-
ferent models with increasing number of control points.
When the amount of control points is really small, the LS-
mesh is distorted and bears almost no similarities to the
original shape. However, as the number of control points
increases, the reconstruction quickly gets closer to the orig-
inal shape. By giving higher weight to the control points
constraints, the LS-mesh can become closer to being inter-
polatory. The weights are incorporated by modifying equa-
tion (2) to the following:

wsvs = ws(xs, ys, zs).

Thus, the energy minimized by the LS system has now the
form

‖Ax − b‖2 = ‖Lx‖2 +
∑
s∈C

w2
s |xs − v(x)

s |2.

As one can see in the 2D example in Figure 9, when the
weight of the control points increases, the LS-mesh bet-
ter approximates them at the expense of the fairness con-
straints.

LS-meshes can be potentially utilized for filling holes in
surfaces. It is possible to adopt a framework similar to the
one proposed by Lévy [13]. Lévy conformally embeds the
mesh in the 2D plane, triangulates the hole in the parame-
ter domain, and then reconstructs the geometry of the newly

6

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

w = 1.0 w = 2.5 w = 5.0 w = 20.0

Figure 9. LS-meshes constructed with varying the weight of the control points constraints. The location of the
control points is marked by small circles. As the weight increases, the LS-mesh becomes closer to interpolatory,
at the expense of compromising the fairness conditions.

introduced vertices by minimizing a discrete curvature cri-
terion. By solving our linear system, where the known ver-
tices around the hole serve as control points, the geome-
try of the unknown vertices is reconstructed. See Figure 8,
where the vertices around the hump were taken as control
points, and the hump was reconstructed by solving the sys-
tem on the reduced mesh (which included the control points
and the connectivity of the hump). We do not need a param-
eterization of the mesh but just a triangulation of the hole.
The resulting shape depends on the number of vertices used
in the triangulation and the quality of the meshing. For in-
stance, when taking the head of the camel and “removing”
the geometry from it, and then reconstructing it by solving
our system, we arrive at the non-trivial shape shown in Fig-
ure 5.

Another interesting area of application is shape model-
ing and editing. By manipulating the control points, a new
LS-mesh is immediately implied. However, unlike in subdi-
vision methods [19], here the connectivity is readily given
and better fits to the subject geometry. This suggests that
LS-meshes can be effective for editing existing shapes. See
for example the horse in Figure 10, where we moved the
control points of its head, resulting in an edited version of
the same mesh. The reconstruction of the LS-mesh is very
fast, assuming that the factorization of the normal equations
matrix of the LS system is pre-computed, which needs to be
done only once per LS-mesh. Then, to obtain the edited LS-
mesh we only need to solve the system by back-substitution,
which is very efficient, as discussed in Section 5 (in partic-
ular, refer to the timings in the Solve column of Table 1).

It is quite tempting to investigate the potential of LS-
meshes for geometry compression and progressive trans-
mission of 3D meshes. Previous work on progressive mesh
compression employed construction of hierarchy for both
the geometry and connectivity of the mesh [1, 8, 20]. Re-
cent methods have concentrated on progressive represen-
tation of the geometry only [4, 10]. In that sense, LS-
meshes are somewhat related to the Spectral Compression
method [10], since in both cases, the connectivity of mesh

Figure 10. An example of editing the LS-mesh. On
the left the original LS-mesh is shown; on the right
the resulting LS-mesh after moving the control
points on the head.

is assumed to be decoded before the geometry is decoded.
Roughly speaking, the spectral method succeeds to recon-
struct large models with a visually pleasing appearance us-
ing a few thousands of spectral coefficients. In terms of
file size, this is equivalent to a few thousands of control
points (see Figure 2(c) for the horse model approximated
with 1000 control points). A fair comparison would require
to agree on a visual metric and to draw distortions curves.
While such a comparison is beyond the scope of this paper,
we would like to emphasize that spectral methods tend to
be optimal [2]. However, a progressive transmission of a
triangular mesh based on LS-meshes can be advantageous
in terms of its computational cost. The spectral method re-
quires computing the eigenvectors of the mesh Laplacian
matrix, which for large meshes is an extremely costly com-
putation. In contrast, the solution of linear least-squares
system is fairly simple and direct.

7 Conclusion

LS-meshes are conceptually simple and easy to imple-
ment. They provide means to reconstruct smooth meshes
from a given connectivity mesh and a (possibly small) num-

7

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

ber of control points. The geometry of the mesh is recon-
structed by solving a sparse linear system. LS-meshes can
deal with high-genus shapes and surfaces which contain
boundaries.

It is important to note that the uniform coefficients in the
smoothness condition (Eq. 1) depend solely on the connec-
tivity of the mesh. Other forms of discretization can be used
if the mesh geometry is known. For example, Kobbelt [12]
locally fits quadratic polynomials to the mesh to approxi-
mate second order derivatives. Then, the smoothness con-
dition is expressed by non-uniform weights that vary over
the mesh depending on the surface geometry and the char-
acteristics of the meshing. In our ongoing research we are
looking into various discretizations schemes of the smooth-
ness condition, such as averaging of higher-order neighbor-
hoods.

We feel that this work opens up a lot of new and interest-
ing research directions, which we hope others will join us
in exploring. These include:

• Understanding the behavior of the LS solution and the
connection to subdivision surfaces. We refer the reader
again to Figure 5, where the shape of the camel’s head
is reconstructed solely from the connectivity. Apply-
ing a subdivision scheme, starting from some coarse
triangulation of the “chopped” neck, would reconstruct
only a smooth cap. The machinery that recovers geo-
metric information from the connectivity needs further
exploration.

• Expanding the domain of LS-meshes to shapes with
sharp features. Currently, LS-meshes handle only
smooth surfaces. We would like to incorporate sharp
edges, preferably in similar global LS framework.

• Analyzing the smoothness and the approximation
properties of LS-meshes.

• Exploring the potential of LS-meshes for progres-
sive transmission of meshes along the lines discussed
above.

Acknowledgements

We would like to thank Sivan Toledo for insightful
discussions. This work was supported in part by grants
from the Israel Science Foundation (founded by the Israel
Academy of Sciences and Humanities), by the Israeli Min-
istry of Science, by the German Israel Foundation (GIF)
and by the EU research project ‘Multiresolution in Geomet-
ric Modelling (MINGLE)’ under grant HPRN-CT-1999-
00117. The screwdriver mesh is courtesy of Cyberware.

References

[1] P. Alliez and M. Desbrun. Progressive compression for loss-
less transmission of triangle meshes. In Proceedings of ACM
SIGGRAPH 2001, pages 198–205, 2001.

[2] M. Ben-Chen and C. Gotsman. On the optimality of spectral
compression of meshes. Preprint, available online from
http://www.cs.technion.ac.il/∼gotsman/publications.html,
2003.

[3] J. F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235–256, July 1982.

[4] P. H. Chou and T. H. Meng. Vertex data compression
through vector quantization. IEEE Transactions on Visu-
alization and Computer Graphics, 8(4):373–382, 2002.

[5] M. Fiedler. Algebraic connectivity of graphs. Czech. Math.
Journal, 23:298–305, 1973.

[6] M. S. Floater. Parametrization and smooth approximation of
surface triangulations. Computer Aided Geometric Design,
14(3):231–250, 1997.

[7] R. Franke and G. M. Nielson. Scattered data interpolation
and applications: A tutorial and survey. In H. Hagen and
D. Roller, editors, Geometric Modelling, Methods and Ap-
plications, pages 131–160. Springer Verlag, 1991.

[8] H. Hoppe. Progressive meshes. In Proceedings of ACM
SIGGRAPH 96, pages 99–108, August 1996.

[9] M. Isenburg, S. Gumhold, and C. Gotsman. Connectivity
shapes. In Proceedings of IEEE Visualization 2001, pages
135–142, 2001.

[10] Z. Karni and C. Gotsman. Spectral compression of mesh
geometry. In Proceedings of ACM SIGGRAPH 2000, pages
279–286, July 2000.

[11] L. Kobbelt. A variational approach to subdivision. Com-
puter Aided Geometric Design, 13:743–761, 1996.

[12] L. Kobbelt. Discrete fairing and variational subdivision for
freeform surface design. The Visual Computer, 16(3-4):142–
158, 2000.

[13] B. Lévy. Dual domain extrapolation. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2003),
22(3):364–369, 2003.

[14] H. P. Moreton and C. H. Squin. Functional optimization for
fair surface design. In Proceedings of ACM SIGGRAPH 92,
pages 167–176. ACM Press, 1992.

[15] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Sei-
del. Multi-level partition of unity implicits. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2003),
22(3):463–470, 2003.

[16] G. Taubin. A signal processing approach to fair surface de-
sign. In Proceedings of ACM SIGGRAPH 95, pages 351–
358, 1995.

[17] G. Turk and J. F. O’Brien. Modelling with implicit surfaces
that interpolate. ACM Transactions on Graphics, 21(4):855–
873, Oct. 2002.

[18] W. T. Tutte. How to draw a graph. Proc. London Mathemat-
ical Society, 13:743–768, 1963.

[19] J. Warren and H. Weimer. Subdivision Methods for Geomet-
ric Design: A Constructive Approach. Morgan Kaufmann
Publishers Inc., 2001.

[20] J. C. Xia and A. Varshney. Dynamic view-dependent sim-
plification for polygonal models. In Proceedings of IEEE
Visualization ’96, pages 327–334., 1996.

8

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

100 control points 250 control points 1000 control points

200 control points 1000 control points 3000 control points

20 control points 50 control points 200 control points

Figure 11. Examples of different LS-meshes. Each row displays LS-meshes computed using the same connec-
tivity graph and a varying number of control points. Note that LS-meshes can have arbitrary topology, including
genus greater than zero.

9

Proceedings of the Shape Modeling International 2004 (SMI’04)

0-7695-2075-8/04 $20.00 © 2004 IEEE

	footer1:

